MASAO SEKIZAKI 331

goniometers and some computation programs of his
laboratory. Part of the expenses of the present study
were met by a grant from the Matsunaga Science Foun-
dation, to which the author’s thanks are due.

Fig. 3. Projection of the structure along the ¢ axis. The mole-
cules are numbered in a similar way as those in Fig. 2.

Acta Cryst. (1973). B29, 331

References

BrowN, D. H., MACSWEEN, D. R., MERCER, M. & SHARP,
D. W. A. (1971). J. Chem. Soc. (A4), pp. 1574-1576.

BruNTON, G. (1969). Acta Cryst. B25, 2161-2162,

International Tables for X-ray Crystallography (1962). Vol.
III. Birmingham: Kynoch Press.

LEeg, J. D., BRowN, D. S. & MELsoMm, B. G. A. (1969). Acta
Cryst. B25, 1378-1385.

Long, R. E., Mappox, H. & TruesLoob, K. N. (1969).
Acta Cryst. B25, 2083-2094.

MaAsuko, A., NoMURA, T. & Saito, Y. (1967). Bull. Chem.
Soc. Japan, 40, 511-515.

NawaTA, Y., Iwasaki, H. & Sarro, Y. (1967). Bull. Chem.
Soc. Japan, 40, 515-521.

Ro, G. & SoruM, H. (1972). Acta Cryst. B28, 991-998.

Sexizaki, M., Marumo, F., Yamasaki, K. & Saito, Y.
(1971). Bull. Chem. Soc. Japan, 44, 1731-1734,

SEK1ZAKI, M., TANASE, M. & Yamasaki, K. (1969). Bull.
Chem. Soc. Japan, 42, 399-404.

SexkizAkl, M. & YaMasakl, K. (1969a). Spectrochim. Acta
25A, 475-485.

Sekizaki, M. & Yamasaki, K. (1969b). Rev. Chim. Minér.
6, 255-266.

SEkiZAKI, M. & YaMmasakl, K. (1970). Inorg. Chim. Acta,
4, 296-298.

SIEGEL, S., TAn, B. & APPELMAN, E. (1969). Inorg. Chem.
8, 1190-1191.

TakAKIL, Y., Sasapa, Y. & WatanNaBg, T. (1960). Acta
Cryst. 13, 693-702,

TakaNno, T., Sasapa, Y. & Kakubpo, M. (1966). Acta
Cryst. 21, 514-522.

The Crystal Structure of Phenyl Phosphorodiamidate
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Crystals of phenyl phosphorodiamidate, C¢HsO.PO(NH,),, are orthorhombic, a=7-99, b=34-02, c=
5-97 A, space group Pbca, 8 molecules in the unit cell. The crystal structure has been determined from
X-ray diffractometer intensity data and refined by least squares to R=0-045 for 1457 reflexions. There is
a significant difference between the lengths of the two P-N bonds (1:604, 1-628 A), which results from
the nitrogen atoms having different hydrogen-bond environments (respectively trigonal and tetrahedral).
The shortness of the P-N bonds suggests that they have considerable = character. The P=0O length is
1-482 A and that of P-O(CsHs) 1-598 A. A network of weak hydrogen bonds, NH--.O (lengths
2:93-3-08 A) and NH- - -N (3-20 A), links the molecules in double sheets. The ‘doubly bonded’ oxygen
atom forms three NH- - - O bonds whose spatial arrangement resembles that in the phosphoric triamide

and urea crystals.

Introduction

Current theories of the bonding in cyclic phosphazenes
and in phosphates (Craig & Paddock, 1962; Cruick-
shank, 1961a) allow for participation of all the atoms
attached to phosphorus in molecular z-bond systems.
Attached amino groups are considered to be involved
as a result of donation of electrons from nitrogen to
vacant 3d orbitals of phosphorus. This is supported

by the observation of short bonds between phosphorus
and such groups in a number of amino-substituted
cyclic phosphazenes, the exocyclic P-N bond length
being 1:62-1-68 A (see for example Ahmed & Pollard,
1972 or Bullen, 1962) as compared to the accepted
length of a P-N single bond, 1:77 A. In phosphoric
triamide, PO(NH,);, the P-N bonds are again short
(Bullen, Stephens & Wade, 1969) and it has been esti-
mated that they have about 30 % n-bond order, a value
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necessarily low because all three nitrogen atoms (and
the oxygen) are competing to donate electrons to phos-
phorus. We have determined the crystal structure of
phenyl phosphorodiamidate, C;H;O.PO(NH,),, in or-
der to find whether the P-N z-bond order is higher
in a molecule which has fewer —-NH, groups in compe-
tition.
Experimental

Phenyl phosphorodiamidate was prepared by means
of the reactions:

POCl;+ C¢H;OH — C{H;OPOCL,+ HCl (1)
CsH;OPOCl,+4NH; — CH;OPO(NH,),2NH,Ct (2)

and was purified by recrystallization from 95 % ethanol
(Brauer, 1963). Well developed orthorhombic bipyram-
idal crystals exhibiting the forms {100}, {010}, and
{101} were produced by slow evaporation of a solution
in propan-2-ol. Unit-cell dimensions were obtained
from precession photographs and diffractometer meas-
urements. Crystal data are given in Table 1.

Table 1. Crystal data

Orthorhombic V=1625 A3

a= 7992 (5) A Z=38

b=34-02 (4) D, =1406 g cm~3
c= 597(1) D, =1407 g cm™3

A(Mo Ka)=0-7107 A
#(Mo Ke)=3-3 cm™?

F(000)="720
Space group Pbca (No. 61)

Systematic absences: 0k/ when k is odd, #0! when / is odd, and
hkO when /4 is odd.

X-ray intensities of the nine layers of reflexions 4k0-8
were measured at 17-19°C on a Philips PAILRED
diffractometer using monochromated Mo Ku radiation.
All reflexions with sin 8/4 <065 A~!, and some with
sin §/A in the range 0-65-0-71 A-!, were measured.
1457 independent reflexions, for 90% of which two
symmetry-related reflexions were measured and their
intensities averaged, gave statistically significant inten-
sities [/>2a()]. Intensities of 00/ reflexions could not
be measured as the crystal was aligned with its ¢ axis
parallel to the w axis of the diffractometer. Corrections
for Lorentz and polarization effects were applied but
no absorption correction as the linear absorption co-
efficient is small (see Table 1).

The least-squares refinement was carried out at the
Atlas Computer Laboratory, Chilton, using the ‘X-ray’
program package. Atomic scattering factors were
taken from International Tables for X-ray Crystallog-
raphy (1962).

Structure determination

The positions of the phosphorus atoms were deduced
from the three-dimensional Patterson function and the
heavy-atom technique was applied to locate the oxygen,
nitrogen and carbon atoms. The atomic positions were
refined by least squares using isotropic temperature
factors until R had dropped to 0-11. The hydrogen
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atoms of the phenyl group were initially placed at cal-
culated positions (assuming a C-H bond length of
1-08 A) and those in the amino-groups were located
from a difference-Fourier synthesis. With the hydrogen
atoms inserted and assigned isotropic temperature fac-
tors 1 A? greater than those of the atoms to which
they are attached, the temperature factors of all other
atoms were allowed to become anisotropic. The weight-
ing scheme w=(A/|F,|)? if |F,| > A4 and w=(|F,|/4)* if
|F,} <A was also introduced, the value of 4 being ad-
justed (final value 12 on absolute scale) until the aver-
age wd4? for groups of reflexions was almost constant
over the whole range of |F,|. Four cycles of refinement
were carried out with the hydrogen-atom parameters
fixed and then a further four with the positional (but
not thermal) parameters of the hydrogen atoms in-
cluded as variables. The final R is 0-045 for 1457 re-
flexions and R'[=(Cwd4?*/>w|F,|*)"?] is 0-054. In the
last cycle of refinement all parameter changes, other
than those of hydrogen atoms, were less (and many
much less) than 0-18¢. The maximum hydrogen param-
eter change was 0-48¢.

The atomic coordinates and thermal vibration par-
ameters are listed in Tables 2 and 3 (see Fig. 1 for the
numbering of the atoms). Observed and calculated
structure factors are given in Table 4. Bond lengths
are listed in Table 5(a) and bond angles in Table 5(c),
allowance being made for the accuracy of the unit-cell
dimensions in the calculation of the estimated standard
deviations. The orientation and magnitudes of the prin-
cipal axes of the vibration ellipsoids (Table 6) were
calculated from the thermal parameters. An analysis
of the anisotropic thermal parameters in terms of a
rigid-body motion for the phenoxy group gave the
translational and librational tensors shown in Table 7.

Table 2. Fractional atomic co ordinates with
estimated standard deviations, and isotropic
temperature factors for the hydrogen atoms

x/a y/b z/e B(AY»
P 0-55260 (7) 0-06065 (2) 0-45479 (10) —
o(1) 0-3812 (2) 0-05294 (5) 0-5389 (3) —
0(2) 0:6248 (2) 0-10170 (5) 0-5391 (3) —
N(1) 0-5532 (3) 0-05874 (8) 0-1864 (3) —
N(2) 0:7077 (2) 0-03389 (6) 0-5438 (4) —
C) 0-5399 (3) 0-13739 (7) 0-5158 (4) —
C(2) 0-5805 (4) 0:16107 (9) 0-3366 (6) —
CQ3) 0-5079 (5) 0-19814 (10) 0-3245 (6) —
C4) 0-3984 (4) 0-21050 (8) 0-4859 (7) —
C(5) 0-3576 (4) 0-18630 (9) 0-6627 (6) —
C(6) 0-4301 (4) 0-14901 (8) 0-6782 (5) —
HQ2)* 0-657 (6) 0-152 (1) 0-225 (7) 5-1
H(@3) 0-545 (5) 0-216 (1) 0-195 (8) 6-2
H®4) 0-354 (6) 0-236 (1) 0-477 (8) 59
H(5) 0-262 (5) 0-195 (1) 0-780 (8) 57
H(6) 0:407 (6) 0-131 (1) 0-793 (8) 5-0
H(11) 0-452 (6) 0-054 (1) 0-095 (8) 5-0
H(12) 0-645 (6) 0-059 (1) 0-115 (8) 5-0
H(21) 0-689 (4) 0-009 (1) 0-524 (6) 3-8
H(22) 0-749 (5) 0-040 (1) 0:674 (6) 3-8

* Atom H(/) is attached to C(i); atoms H(ij) are attached to
N().
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The orthogonal axial system for the analysis has its
origin at the phosphorus atom, the x axis passing
through the centroid of the phenoxy group, and the
z axis perpendicular to the plane containing the cen-
troid and the atoms P and O(2). Since the off-diagonal
terms of the @ tensor are small in comparison with
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their standard deviations, the librations can be dis-
cussed in terms of oscillations about the three group
axes. The largest oscillation, with r.m.s. amplitude 6-3°,
is understandably about the x axis since it will be
easier for the phenoxy group to oscillate about its
length than about other axes. Bond lengths corrected

Table 3. Components of thermal vibration tensors (A2, x 10" and their estimated standard deviations

Uy Uz Uss Ui, Uis U,
P 251 (3) 360 (3) 300 (3) -32(2) 0(3) -303)
o(1) 296 (8) 494 (9) 371 (8) —54 (7) 67 (8) —10(8)
0oQ2) 390 (9) 365 (8) 592 (11) —43 (7) —108 (9) —23(9)
N(1) 299 (9) 867 (17) 321 (10) —-21(12) -4 (10) 18 (11)
N(2) 346 (10) 420 (10) 363 (10) —3(8) —47 (10) 3(10)
C(1) 347 (12) 366 (10) 504 (15) —52(9) =57 (1) —30(9)
C(2) 542 (17) 545 (16) 588 (20) —12 (13) 29 (14) 85 (14)
C(3) 712 (20) 555 (17) 749 (23) —21(16) 3(19) 172 (16)
C4) 619 (18) 402 (13) 911 (30) —16 (13) —106 (18) -4 (15)
C(5) 576 (18) 473 (15) 812 (24) —35(13) 84 (18) —149 (15)
C(6) 563 (17) 439 (13) 606 (19) —91 (12) 71 (15) —-52(12)
Table 4. Observed and calculated structure factors (X 10)
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for the effect of these molecular oscillations (Cruick-
shank, 1956, 1961b) are given in Table 5(b).

Table 5. Bond lengths (A) and bond angles (°)
with estimated standard deviations

(a) Bond lengths from the least-squares refinement

P-0O(1) 1-482 (2) C(1)-0(2) 1-:398 (3)
P-0(2) 1:593 (2)

N(1)-H(11) 0:98 (5)
P-N(1) 1-604 (3) N(1)-H(12) 085 (5)
P-N(2) 1-628 (2) N(2)-H(21) 087 (4)

N(2)-H(22) 0-87 (4)
C(1)-C(2) 1-379 (4)
C(2)-C(3) 1-390 (5) C(2)-H(2) 0-96 (5)
C(3)-C4) 1-368 (5) C(3)-H(3) 1:03 (5)
C4)-C(®» 1-378 (5) C4)-H@4) 0:94 (5)
C(5)-C(6) 1-398 (4) C(5)-H(5) 1-08 (4)
C(6)-C(1) 1366 (4) C(6)-H(6) 0-94 (4)
(b) Corrected for molecular oscillations
P-0(2) 1-598 (2) C(1)-0Q2) 1-400 (3)
C(1)-C(2) 1-387 (4) C4)-C(5) 1-386 (5)
C22)-C@3) 1-392 (5) C(5)-C(6) 1-400 (4)
C(3)-C4) 1-376 (5) C(6)-C(1) 1-:374 (4)

Mean C—C 1-386 (10)

(c) Bond angles
O(1)-P-0(2) 112-5 (1) P———N(1)-H(11) 124 (3)
O(1)-P-N(1) 109-5 (1) P——N(1)-H(12) 120 (3)
O(1)-P-N(2) 119-6 (1) H(11)-N(1)-H(12) 115@4)
O(2)-P-N(1) 110-5 (1)
0O(2)-P-N(2) 96-4 (1) P-——-N(2)-H(21) 112(2)
N(1)-P-N(2) 107-6 (1) P-——N(2)-H(22) 116 (3)

H21)-N(2)-H22) 115(4)
P-0(2)-C(1) 1237 (2)

C(1)-C(2)-H(2) 120 (3)
0(2)-C(1)-C(2) 118-1 (2) C(3)-C(2)-H(2) 121 (3)
0(2)-C(1)-C(6) 119-5 (2) C(2)-C(3)-Hy3) 117 (3)

C(4)-C(3)-H(3) 122 (3)
C(1)-C(2)-C(3) 118:2 (3) C(3)-C(4)-H(4) 119 (3)
C(2)-C(3)-C(4) 1206 (3) C(5)-C(4)-H®4) 120 (3)
C(3)-C(4)-C(5) 120-5 (3) C(4)-C(5)-H(5) 120 (2)
C(4)-C(5)-C(6) 1196 (3) C(6)-C(5)-H(5) 120 (2)
C(5)-C(6)-C(1) 118:8 (3) C(5)-C(6)-H(6) 124 (3)
C(6)-C(1)-C(2) 1222 (3) C(1)-C(6)-H(6) 117 (3)

An attempt to make a similar rigid-body vibration
analysis for the tetrahedral PO,N, group was unsuc-
cessful in that the components of the librational tensor
so produced had standard deviations too large for
the results to be reliable. This may be because the dif-
ferent hydrogen-bond environments of the oxygen and
nitrogen atoms (see discussion below) prevent the
group behaving as a rigid body. The P=0 and P-N
bond lengths cannot therefore be corrected for libra-
tional error. The only bond which may be seriously
affected by this omission is P-N(1). Atom N(1) has a
large vibration (r.m.s. amplitude 0-295 A, see Table 6)
perpendicular to the P-N(1)-H(11)-H(12) plane which
could be attributed either to a libration or to transla-
tional motion permitted by the atom’s planar hydrogen-
bond environment.

Discussion

Hydrogen bonding

All the hydrogen atoms are involved in a hydrogen-
bond system which links the molecules in double sheets
(Fig. 1). Each oxygen atom forms three NH - - - O bonds
(Table 8) whose spatial disposition resembles that of
the NH- - - O bonds in phosphoric triamide (Fig. 2) and
urea. The grouping of four hydrogen bonds present
in PO(NH,); is reduced to three in C¢H;OPO(NH,),
because fewer NH groups are available and the space
at one side of the P=0 bond is occupied by the phenyl
group (Fig. 1). In addition to the NH- - - O bonds there
is just one NH- - -N bond per molecule (Table 8). As
a result, the environments of N(1) and N(2) are dissim-
ilar, N(2) forming hydrogen bonds to two oxygen atoms
and another nitrogen while N(1) forms hydrogen bonds
to only one oxygen atom and a nitrogen. The environ-
ment of N(2) is distorted tetrahedral but that of N(1)
is very close to trigonal planar [see angles in Table 5(c)].
A similar situation occurs in phosphoric triamide where
one nitrogen atom forms fewer hydrogen bonds than
the other two (Bullen, Stephens & Wade, 1969).

Table 6. Root-mean-square amplitudes of thermal vibration (A) along the principal axes of the vibration ellipsoids

The direction of each principal axis is specified by the angles it makes with the crystallographic axes

a b c
P 0-192 105° 15° 88°
0-173 89 92 2
0156 15 75 91
o) 0-226 107 21 78
0-199 114 108 30
0-158 30 80 62
0(2) 0-253 67 89 23
0-201 125 39 76
0-174 45 51 108
N@1) 0-295 92 3 92
0-179 81 38 9
0-173 9 88 99
N(2) 0-205 99 14 101
0-200 52 76 42
0175 40 90 130

A C29B - 12*

a b c
C(1) 0-229 74° 85° 17°
0-202 126 37 84
0-169 41 54 106
C(2) 0-256 98 126 37
0-235 22 111 96
0-217 69 44 53
C(3) 0-291 87 120 31
0-267 6 92 95
0213 86 30 60
C@) 0-307 72 90 18
0-242 19 95 108
0-200 85 5 91
C(5) 0-299 106 70 26
0-234 16 86 75
0-204 89 20 110
C(6) 0-264 52 111 134
0-229 50 105 44
0-197 64 27 94
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Table 7. Translational (T, A?) and librational (®, deg?) tensors for the phenoxy-group

See text for definition of the axial system

0-043 (2) —0-002 (2) 0-003 (2)
T=( 0-030 (3) 0-001 (3))
0-038 (3)

Table 8. NH- - -O and NH- - - N hydrogen-bond
distances

Atom A4 Atom B Transform of atom A4

N(1)-H(12)- - -O(1) ~3+x, y, %-z 295 A
N(2)-H(21)- --O(1) 1—x, —y, 1—z 308
N(2)-H(22)- - -O(1) —3+x, y 11—z 2:93
N(1)-H(11)- - *N(2) I+x, y, -z 320

Bond lengths and bond angles

The bond lengths in C¢gH;OPO(NH,), are compared
in Table 9 with those in PO(NH,); and (C¢H;O);PO.
As in PO(NH,);, P-N,,;, is significantly shorter than
P-N,., showing that where the trigonal environment
of the nitrogen atom is not disturbed by hydrogen
bonding the P-N bond acquires greater n character.
Both the P-N bonds are substantially shorter than
those in PO(NH,);, implying a higher bond order.
Since nitrogen is a better electron donor than oxygen,
replacement of an —-NH, group by ~-OC¢H; has allowed
the remaining nitrogen atoms to donate to phosphorus
more effectively. For this reason one might expect the
P-N bond to be shorter still in a molecule of type
(RO),PONH,. The shorter P=0 in CcH;OPO(NH,),,
as compared to PO(NH,);, arises from the same effect,
which becomes even more pronounced in (C¢H;0);PO
from which the nitrogen atoms have been eliminated
completely. This progressive shortening of the P=0
bond is also found in the series PO;~P,05~—(PO; )~
P,O,0 (Cruickshank, 1961a) showing that z systems
analogous to those in phosphates are also produced
by donation of electrons from nitrogen to phosphorus.
Indeed in C4H;OPO(NH,), the bond P-N(1) is very
nearly as short as the ring bonds in some cyclic phos-
phazenes (e.g. N,P;Meg 1:596 A, Dougill, 1961) sug-
gesting that its z-bond order is in the region of 40-50 %.

The P-Olength and P-O-C angle in CsH;OPO(NH,),
are of similar size to those in (C4H;O);PO and are
consistent with the bond P-O(2) possessing some =«
character (¢f. the Schomaker-Stevenson estimate for
a single P-O, 1-71 A). A further test for participation
of the oxygen and nitrogen atoms in the z system with
phosphorus is that the orientation of the 2p orbitals
on these atoms must follow a consistent pattern. The
P-0O(2)-C(1) plane is parallel (within 2°) to the N(2)-
P-0O(2) plane so that, taking the bisector of the N(2)-
P-O(2) angle as the axis of quantization (z), the 2p
orbital on O(2) will mate almost perfectly with the
3d.2-,: orbital on phosphorus. If the 2p orbital on N(1)
is to overlap with this same 3d orbital, the P-N(I)-
H(I1)-H(12) plane must also be parallel to the axis of"
quantization. This condition is satisfied quite well, the

0(2)

39 (8)
(1)=( 5:3(7)

0-6 (8)
—-1-0(6)
36 (6))

angle between the plane and the axis being less than 7°.
Unfortunately the same test cannot be applied to N(2)
because it isin a tetrahedral, rather than a trigonal, en-
vironment.

The six carbon atoms of the phenyl group are co-
planar (maximum deviation from their mean plane
0-004 A) but O(2) is displaced by 0-128 A from their
plane. The phenyl ring makes an angle of 85° with the
P-0O(2)-C(1) plane. There is thus no overlap between
its 7 system and the 2p orbital on O(2). This orientation
results in the two sides of the ring making similar
intramolecular contacts with the phosphorodiamidate
group: C(6)---O(1) 3-40 A, C(2)---N(1) 3:60 A. The
shortest intermolecular contacts between phenoxy-
groups are (a) within a hydrogen-bonded sheet: C---O
338 é, C-.-C3:59 A; (b) between the sheets: C---C
381 A.

We are indebted to the University of Essex Com-
puting Centre and the Atlas Computer Laboratory,
Chilton for the use of their facilities, Mr N. Lewis for
the preparation of diagrams, the Science Research
Council for the award of a research studentship (to
P. E. D.), and the Department of Physical Chemistry,
University of Cambridge for its hospitality (to G. J. B.)
while this paper was being prepared.
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Fig. 2. Angles (°) between the NH- - - O bonds meeting at one
oxygen atom. (a) CeHsOPO(NH,),. The nitrogen atoms are
those whose coordinates are given in Table 8; the subscripts
21 and 22 show which hydrogen atom is involved in the bond.
The angle between the P=0O- - - N(2,,) and the N(25,)---O---
N(1) planes is 87°. (b) PO(NH,);. The angle between the
Ni-..O---Ni apd Nit---0O- - -N" planes is 86°.
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Table 9. Comparison with related molecules

PO(NH,);
(Bullen e al., 1969)
P=0 1-510 A
P—Nio 1-658, 1661
P—Niyiq 1-648
Cc-0 -
P-O-C -

CsH;OPO(NH,), (CsH;0);PO
(This work) (Corbridge, 1966)

1-482 A 1-43 A
1:628 -
1-604 -
1-598 1-55-1-60
1-400 1-39-1-43
123-7° 123-125°

* The subscripts ‘tet” and ‘trig’ signify atoms in tetrahedral and trigonal hydrogen-bond environments.
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The Crystal Structure of Pentamethylbenzotrichloride
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The crystal structure of pentamethylbenzotrichloride [(CH;)sCsCCl;] at 143°K was determined from
densitometer measurements of photographic precession camera data (1035 independent reflections).
The orthorhombic unit-cell dimensions are a=19-133 (3), b=11-898 (4), c=10-666 (1) A, space group=
Pbca, Z=8, D.=1-45 gcm~3, D,,=1-32 (2) (by flotation). The structure was solved by the symbolic-
addition method and refined by the full-matrix least-squares method to R=8-6%. The C¢(CH;);-frag-
ment of the molecule shows significant deviations from planarity with the methyl group ortho to the
—CCl, group forced 0-3 A out of the plane. The carbon atom of the —CCl; group is displaced 0-4 A out
of the plane in the opposite direction. The average C—Cl bond length of 1:796 (11) A is longer than the

typical C—Cl bond length of 1-76 A.

Hart & Fish (1958, 1962) proposed the formation of
dications (II) by the loss of two chlorine atoms from
the trichloromethyl group of various polymethyl-
benzotrichlorides (I), and Hart & Fleming (1962) re-
ported the preparation of such a salt of pentamethyl-
benzotrichloride. Gillespie & Robinson (1964, 1965)
and others (Deno, Friedman & Mockus, 1964; Robin-
son & Ciruna, 1964) proposed that the monocation
(II) was formed instead and contended that the experi-
mental observations of Hart & Fish were consistent
with this model. The formation of the dication has
never been repeated by other workers, but, in any
event, the formation of even the monocation species is
undoubtedly aided by overcrowding in the trichloro-
methyl group. The crystal structure of pentamethyl
benzotrichloride has been carried out to determine the

extent of this distortion in the parent molecule due to
the interaction of the bulky methyl and trichloromethyl
groups.

+ cl
c-cl .

Cl

CCl;

0] (11) (1

Experimental

Pentamethylbenzotrichloride, (CH3);C4CCls,
(PMBTC), was prepared according to the method of
Hart & Fish (1958). Colorless crystals of symmetry



